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We have der ived  fo rmu la s  for  the de te rmina t ion  of the t e m p e r a t u r e  field in two- l aye r  bodies  
exhibiting va r ious  the rmophys ica l  p r o p e r t i e s  and with a heat source  whose intensity v a r i e s  
a rb i t r a r i l y .  

Le t  us cons ider  a s y s t e m  consis t ing of a semiinf ini te  body and a plate with va r ious  the rmophys ica l  
p r o p e r t i e s .  The heat  source  is d is t r ibuted uniformly over  the plate su r face .  The heat  flow,~(t) va r i e s  
a r b i t r a r i l y  as specif ied.  

The t e m p e r a t u r e  field T(z,  t) is desc r ibed  by the equations 

O~T____~, = . l_L - OV__~ (0..< z ..< h), 
az ~ a, Ot 

O~T2 = 1 OT~ (h..< z < oo ) 
Oz ~ a z Ot 

with the initial  and boundary conditions 

(1) 

(2) 

Tl (z, 0) = T~ (z, 0), (3) 
7, (h, 0 = T~ (h, 0, (4) 

x, aT, (h, 0 = x~ OT, (h, t ) ,  (5) 
Oz Oz 

Tz (co, t) = O. (6) 

The heat  t r a n s f e r r e d  f rom the source  of the sy s t em at any instant of t ime  is expended on the heating 
of the s y s t e m ,  i. e . ,  

t h 

S S r,(z, 0 z+ c2r2i r2(z, h)dz. 
0 0 h 

(7) 

The the rmophys ica l  coeff icients  of the sy s t em a re  a s sumed  to be independent of t e m p e r a t u r e .  The 
exact  solutions sa t is fying (3)-(7) will then be the following. 

In the plate 0 - h - ~o 

in the body h -< z -< oo 

t 

1 ~ (x) ( - -  ~r exp T t (z, t) V~--~t ~/'t-'~-~- a I (t -- x) 
0 = 

+ ~  (--u)k+Xexp [ 
k=O 

[ 2 h ( k + l ) - - z l 2 ] }  d x ' a ~  (t - -  ~) (8) 
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Fig. 1. Tempera tu re  field of the following sys tems:  1) graphite plate h = 10 ~m and copper body; 
2) the same,  h = 20 pro; 3) copper plate h = 10 ~m and graphite body; 4) the same,  h = 20 pro; 5) 
graphite body without plate; 6) copper body without plate; in the calculations we assume that: 
= 1 ca l / cm 2" sec (for curves 5 and 6 we have,~ = 0.5),t  = 25 Izsec, respect ively ,  for the copper 
and the graphite we have c = 0.094 and 0.4 c a l / g . d e g ,  3' = 8.93 a n d 2 g / c m  3, X = 0.72 and 0.05 
c a l / c m . s e c . d e g ,  a = 0.86 and 0.0625 cm2/sec.  

Fig. 2. Tempera tu re  as a function of time in a system made up of a graphite plate and a copper 
body: 1) at the plate surface;  2) at the boundary between the plate and the body; 3) in the body, 
at a depth of 100 ~m from the plate surface;  a) h = 10; b) 20/xm, 0 = 1 ca l / cm 2. sec. 

Fig. 3. Rake-shaped heat source (a) and tempera ture  as a function of t ime at the surface of a 
graphite plate 20 ~m thick, with a copper body for ~ = 1 (b). The dashed lines show the t empe r -  
ature f rom the negative sources .  The solid line represen t s  the overal l  temperature .  The num- 
bers  at the curves  correspond to the source  numbers.  

T2 (z, t) = V - ~  (~ + g2) o ~ ~.d~=o ( -  • exp . . . .  V ~ a~ J dT, 
(9) 

(10) 

These las t  expressions descr ibe  the tempera ture  field for any variat ion in the heat flow. 

If 0 = const,  the tempera ture  field is descr ibed by s impler  formulas .  
(8) and (9), we find 

2~V-V 
h = 0  

4~ V7 Y 2 ( z , t ) :  ~ . ~ I ~  ( _ _ •  I ( m 3 )  ' 

I (m) = exp (-- m 2) - -  V~m [1 - - r  (re)I, 

45 (m) -- l /~  exp ( - -  !t 2) cly - -  in the Kramp function, 

0 

In this ease,  having integrated 

(11) 

(12) 

(13) 
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2h/~+ z (14) 
mi -- 2 ~ ' 

2h(k + 1 ) - - z  (15) 
m 2 - -  7 2VV 
h(2k+ 1) z - - h  (16) 

m 3 - -  .A 7 

2V ,t  vWt 
The funct ion I(m) is s t rong ly  dependent  on m. Since it d imin i shes  sha rp ly  with an i n c r e a s e  in m, 

the s u m s  i n  (11) and (12) c o n v e r g e  r a t h e r  rap id ly .  In mos t  c a s e s ,  2-3  t e r m s  a r e  suff ic ient .  

F igu re  1 shows the t e m p e r a t u r e  d i s t r ibu t ion  in a c o p p e r - g r a p h i t e  s y s t e m  (plate t h i ckness  h = 10 and 
20 ~m,  dura t ion  of h e a t - s o u r c e  ope ra t i on  25 g s e c ,  ,) = 1). For  c o m p a r i s o n ,  we p r e s e n t  the t e m p e r a t u r e  
d i s t r ibu t ion  in a o n e - c o m p o n e n t  s y s t e m  of the s a m e  m a t e r i a l s .  

The t e m p e r a t u r e  at the s u r f a c e  of the plate  and at the boundary  be tween  the plate  and the body is d e -  
t e r m i n e d  f r o m  (11) and (12), a s s u m i n g ,  r e s p e c t i v e l y ,  that  z = 0 and z = h: 

at  the  p la te  s u r f a c e  

T(0, t ) -  21}V-i- | (17) V ~ i  Z ( -  • [I (rnio) - -  M (rnzo)], 
k = 9  

hk h(k + 1). (is) 

at the bo tmdary  be tween  the p la te  and the body 

7"(h, t) = 4,~V t ( _ _ ~ ) k l ( m )  ' (19) 
g~(~,, + ~)  = 

m = (2k + l) h (20) 
2 V ~ t  

Figu re  2 shows the cu rves  g iv ing the r i s e  in t e m p e r a t u r e  as  a funct ion of h e a t - s o u r c e  ope ra t i on  at 
the su r f ace  of  the p la te  in a g r a p h i t e - c o p p e r  s y s t e m ,  with the th i ckness  of the g raph i te  pla te  h = 10 and 
20 pro,  at the boundary  be tween  the plate  and the body,  and within the body,  at a depth of  z = 100 # m  f r o m  
the s u r f a c e  of  the pla te .  

In ac tual  p r a c t i c e ,  the change in h e a t - s o u r c e  in tens i ty  can f requen t ly  be r e p r e s e n t e d ,  in a p p r o x i m a t e  
t e r m s ,  in r a k e - l i k e  f o r m ,  as  shown in Fig.  3. The  height  of  each  tooth may vary ;  howeve r ,  within any 
given t ime  in te rva l  tn+ 1 -- tn, ~n = const .  The dura t ion  of the t ime in terva l  may a l so  va ry .  The t e m p e r a -  
tu re  f ield for  such  a s o u r c e  can be d e t e r m i n e d  f r o m  (11) and (12), us ing the Duhamel  t h e o r e m .  We find: 

in the plate  0 ~ z =_~ h 

n ~ ? n  

Tt (z, t) = l/~--2 ~l ~ ( ~  - -  O n - i ) , = z  1 / ~  ~=0 (--•215 (21) 

in the b o d y h - < z  -<~o 

T2 (z, t) = 1 /~ -  (~i4 _ ~zi X (% - -  0._,) # t - -  t._t (-- .)hl (m3~), 
n =  I k ~ 0  

(22) 

w h e r e  n is the in te rva l  number ;  m is the number  of in te rva l s ;  $0 = 0 and t o = 0; tn is the t ime  at the end of 
t - t n _  1 = 0, we have I(m) = 0; 

2hk + z mi. = , (23) 
2 ~ h~ (t - -  t._i) 

2h(k + l) - - z  (24) 
/T/Zrl  = 

2 t" at (t - -  t~_0 
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h (2k + 1) 

2 V'a,  (t - t._,) 
z - - h  + 

2 Va2 (t - t~_,) 
(2s) 

The tempera ture  at the surface of the plate is 

n ~ t n  

n~ |  

~ (-- • [I (mi0a) -- • (rn~0,) ] 
k=0 

(26) 

and at the boundary between the plate and the body it  is 

t z ~ r n  

_ 4 Z (~}n --~.-,) ~ (-- • (rnh.), T (h, t) |/-~n ([l + ~)  .=, k=o (27) 

where 

(2S) 
rn~o. = V~,(t-t . . , ) '  

h (k + I) (29) 
rn~. = Va ,  ( t -  t._,) ' 

(2k + l) h 
m~. = 2 V a~ ( t - t . . . )  (30) 

The calculations based on (26) and (27) are  simplified by introducing negative sources  and using the 
method of superposition. Then, having calculated the curves  from (17) and (19) for $ = 1, for each of the 
sources  we can obtain the tempera ture  as a function of t ime by multiplying these curves  by '~n" Positioning 
the origin for the curve of each of the sources  on the graph at the instant at which it begins to operate and 
summing all of the curves ,  with considerat ion of their signs, we will find the final t empera tu re  curve. This 
is i l lustrated in Fig. 3. 

Figure 3a shows a rake-shaped  complex energy pulse. It is replaced by 6 infinite sources  with con- 
stant intensities,  which begin to operate with a delay relat ive to each other. Thus, at the instant of t ime 
t = 0 the f i rs t  source begins to operate with an intensity ,~l. At the instant t = t 1 the second negative source 
is actuated,  and it exhibits the intensity '~2 - ' ~ l .  Then, when t = t 2 the third positive source is actuated, 
exhibiting the intensity ~3 - J2, etc. At the instant t = t s the last  negative source is actuated, and its inten- 
sity is '~6 - '~5, and here  '~6 = 0. 

The change in tempera ture  at the plate surface as a resul t  of the operation of the sources  is shown 
in Fig. 3b. The change in tempera ture  result ing from the action of the f i rs t  source ) l  yields the curve 1; 
the action of the second source  '~2 - Ol gives us curve 2, etc. Curve 2 is curve 1, reduced by a factor  of 
(~2-  J l ) /~l  - Curve 3 repeats  curve 1, but with the ordinates increased as (~3-~2)/~1" The curve between 
t 2 and t 3 is the a lgebraic  sum of curves  1, 2, and 3. The remaining curves have been plotted in this man-  
ner.  

The use of the superposition method markedly simplifes the calculation, since with these formulas we 
have to calculate only a single curve, despite the complex shape of the heat source. 

a is the coefficient of thermal  diffusivity; 
c is the heat capacity; 
h is the plate thickness;  
t is the time; 
T is the tempera ture ;  
z is the instantaneous coordinate; 
Y is the density; 
}, is the thermal  conductivity; 
,~ is the heat-f low intensity. 

NOTATION 
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S u b s c r i p t s  a n d  

1 is the plate; 
2 is the body. 

S u p e r s c r i p t s  

Io 

2. 
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